Analýza nekonečně malého za účelem chápání křivek
Kód: KOS502797Nezávislé rodinné knihkupectví
Nespadáme pod velké řetězce, nabízíme rozmanité knižní srdcovky a nabízíme, co máme rádi. Ne to, co nám někdo nařídí.
Dárek zdarma
Ke každé objednávce
23 let lásky ke knihám
Žijeme knihami už od roku 2001. Máme přehled a umíme dobře poradit a své zákazníky známe.
Unikátní výběr
Přes 45 tisíc knih, včetně novinek i starších a nekomerčních pokladů.
Detailní popis produktu
Jde o druhé české opravené a doplněné vydání první světové učebnice diferenciálního počtu. Neslouží proto současným studentům či učitelům pro výuku. Je určena těm, kteří se zajímají o historii diferenciálního počtu jako doklad o počátcích kalkulu.Skutečným autorem nebyl markýz L'Hôpital, ale jeden z příslušníků dynastie Bernoulli, což se potvrdilo, myslím, roku 1922.
Kniha je rozdělena do deseti částí, které jsem nazval oddíly:
1 oddíl, ve kterém jsou zavedena pravidla tohoto výpočtu
2 oddíl. Použití diferenciálního počtu k nalezení tečen ke křivým čarám všech druhů
3 oddíl. Použití diferenciálního počtu k nalezení největších a nejmenších ordinát, ke který se přivádějí otázky DE MAXIMIS ET DE MINIMIS
4 oddíl. Použití diferenciálního počtu k nalezení inflexních bodů a bodů vratu
5 oddíl Použití diferenciálního počtu k nalezení evolut
6 oddíl Použití diferenciálního počtu k nalezení kaustik odrazu
7 oddíl Použití diferenciálního počtu nalezení kaustik lomu
8 oddíl Použtí diferenciálního počtu k určení křivek, dotýkajících se nekonečného počtu polohou daných přímých nebo křivých čar
9 oddíl Řešení některých úloh spojených s výše uvedeným metodami
10 Oddíl Nový způsob využití diferenciálního počtu pro geometrické křivky, ze kterých se odvodí metoda p. Descarta a Hudde
V knize je samozřejmě také uvedeno L'Hôpitalovo pravidlo v oddílu 9, toto pravidlo ve skutečnosti ovšem odhalil skutečný autor učebnice, tedy výše zmíněný Bernoulli
Ke druhému vydání je připojen český překlad textu Johanna I. Bernoulliho "Přednášky o kalkulu diferenciálů", který sloužil lHospitalovi jako skutečná předloha jeho učebnice.
Fontenella "Chvalozpěv na markýze de L'Hôpitala, který je hlavním zdrojem informací o jeho životě doplňuje to krátký text.
"Definice některých pojmů a křivek" Kinematická geometrie, technické křivky, popis obrázků a zdroj, některé další termíny, vychází z textu Šárky Voráčové.
K překladu knihy je připojen překlad práce :
B. Riemanna O počtu prvočísel, které jsou menší než zadaná veličina, která je základem dosud nevyřešené tzv. Riemannovy hypotézy z teorie čísel.
Za její vyřešení je vypsána odměna 1 mil. dolarů.
V říjnu 2018 se objevila v médiích informace, že Sir Michael Atiyah na konferenci Heidelberg Laureate Forum přednesl svůj důkaz Riemannovy hypotézy.
Riemannova hypotéza je jedním z tzv. sedmi matematických problémů tisíciletí, které v roce 2000 vyhlásil Clayův matematický institut. Jsou to nejdůležitější známé problémy matematiky, které čekají na vyřešení. Za vyřešení každého z nich je přitom vypsána odměna jednoho milionu dolarů.
Dále jsou v knize texty:
"Jak vydat knihu", který může pomoci těm, kteří se chystají vydat knihu.
"Krátce o fotografii a její historii"
Alexandr Jankov "Basilejský problém"
Doplňkové parametry
Kategorie: | Naučná a odborná literatura |
---|---|
Autor: | Guillaume de L'Hôpital |
EAN: | 9788090383845 |
Jazyk: | cze |
Počet stránek: | 272 |
Druh produktu: | kniha, brožovaná vazba |
Rok vydání: | 2022 |
Buďte první, kdo napíše příspěvek k této položce.
Přidat komentář